Galaxies -- Introduction

۲

۲

• Classification -- Feb 13, 2014

Why Begin with Classification?

- The Hubble system forms the basic vocabulary of the subject.
- The sequence of galaxy types reflects an underlying physical and evolutionary sequence.
 - provides an overview of integrated properties
 - reproducing the variation in these properties along the Hubble sequence is a major (unsolved) challenge for galaxy formation/evolution theory

An ideal system

- Classes bring order to diversity of galaxy forms
- Span/include majority of galaxies
- Unambiguous and easily identified criteria
- Relate to important physical properties and provide insight into internal processes, formation and evolution of galaxies

Hubble Classification System Hubble 1926, ApJ, 64, 321

۲

• • •

The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork

Basic ideas

- Hubble was impressive by Jean's theory of galaxy formation, and his tuning folk was thought to be an evolutionary sequence: Es are early type, and S and Irr are late type
- 4 basic components used in the classification:
 - Spheroid, disk, bar and arms
 - Presence and absence and relative strength of these components define classes

- Principle criteria for spiral stage:
 - Openness of spiral arms
 - Bulge/disk ratio
 - Degree of resolution of arms into HII regions

Brief History of the Hubble Sequence

- 1926: Hubble's simple tuning folk
- 1936: Hubble adds S0 & SB0: the tuning folk you see in textbooks
- Revision by Sandage:
 1961: Hubble atlas
 1992: Carnegie atlas

- Revision by de Vaucouleurs
 - A 3-D system:
 - Stage (E-S-Irr)
 - Family (bar)
 - Varity (inner and outer rings)
 - Used in his RC catalogs –
 Reference Catalogs of Bright Galaxies

Caveats of current system

- Based on limited number of nearby galaxies, in particular, high surface brightness galaxies, because they are easier to find
- Most criteria are descriptive, I.e., very difficult to quantify and develop automatic procedures
- Does not contain information about the size, luminosity or kinematic information of the galaxy
- Based mostly on photographic images taken in the BLUE
 - Emphasizes star formation rather than mass distribution
 - Appearance can vary greatly with wave-band
- Difficult to compare with high-redshift galaxies, which are mostly observed in the rest-frame UV
- Requires reasonably good spatial resolution, difficult for galaxies at z>0.1 from the ground

Galaxies at Non-optical Wavelengths:

Spirals in ultraviolet (dominated by massive stars) and visual (average population), Ultraviolet Imaging Telescope, Astro mission.

Spirals in ultraviolet (dominated by massive stars) and visual (average population), Ultraviolet Imaging Telescope, Astro mission.

M 33

visible

۲

NGC 5907

- Elliptical galaxies
 - smooth structure, elliptical light distribution
 - relatively little evidence of gas, dust
 - subtypes defined by projected flattening
 E0 E7 where n = 10(a-b)/a
 - n is not fully intrinsic: projection
 - Few have n>6, basically stops
 - Deviations from pure ellipse small → concepts of disky and boxy Es (will discuss in E lectures)

- SO (lenticular) galaxies
 - introduced in 1936 revision of system
 - Structureless
 - Not elliptical, with disk/bulge structure
 - No spiral structure
 - Difficult to classify
 - In many cases, we just say E/S0 for early type galaxies as a whole

Spiral galaxies

- flattened disk + central bulge (usually)
- two major subclasses: normal and barred
- subtypes Sa, Sb, Sc distinguished by 3 criteria
 - bulge/disk luminosity ratio
 - B/D ranges from >1 (Sa) to <0.2 (Sc)
 - spiral arm pitch angle
 - ranges from 1-7° (Sa) to 10-35° (Sc)
 - "resolution" of disk into knots, HII regions, stars
- these three criteria are not necessarily consistent!
- each reflects an underlying physical variable
 - B/D ratio ---> spheroid/disk mass fractions
 - pitch angle ---> rotation curve of disk, mass concentration
 - resolution ---> star formation

Grand Design vs. Patchy Spirals

Irregulars: I

- Magellenic Clouds type
- Very late, no nucleus, low luminosity, often dwarfs
- Labelled Irr I by Hubble
- Labelled Sm, SBm, Im, Ibm by de Vaucouleurs and by Sandage later

Irregular II

- M82 type; starburst
- probably mergers, amorphous appearance
- Labelled Irr II by Holmberg, Hubble
- Labelled I0 by de Vaucouleoys
- Labelled Am by Sandage

M 82, a starburst galaxy, white/brown: stellar light and dust, red: hot expanding gas in Hα (Subaru telescope)

Dwarf Irregulars (dIrr)

- No clear disk or spirals or nucleus
- Patchy star formation on fainter old population
- Often HI rich
- Extreme examples are BCD, blue compact dwarfs with very strong star formation

Blue Compact Dwarf (BCD) NGC 1705, blue: blue continuum, green: red continuum, red: Hα (G. Meurer)

:Dwarf Elliptials (dE) and Dwarf Spheroidals (dSph)

- Very small, 0.1-1 kpc
- Higher/lower surface brightness corresponds to dE/dSph
- Morphology similar to Es
- Light profile similar to Ss

Dwarf Galaxies:

- Do not follow fundamental law for Es \rightarrow different origin
- Most common kind of galaxy in the Universe

Leo 1, dwarf elliptical (dwarf spheroidal) companion of Milky Way

Sculptor dwarf, dwarf elliptical companion of Milky Way

from: Anglo Australian Observatory

Compact Ellipticals (cE)

- M32 (companion of M31)
- Seem to follow the basic laws of Es, just smaller
- Quite rare

Dwarf Spheroidal Galaxies

- SF history from HST CMDs
- young population is absent (by definition)
- old population ubiquitous
 - at least one purely old galaxy
 (Ursa Minor)
- intermediate-age population varies from 0% --> >90%

Mighell, Burke 1999, AJ, 118, 366

•Relatively steady SF from 10-13 Gyr to 1 Gyr ago

Gallart et al. 1999, ApJ, 514, 665

Gallart et al. 1999, AJ, 118, 2245

• Unclassifiable galaxies?

- ~2% of galaxies cannot be classified as E, S, Irr
- predominantly disturbed or interacting systems
- At high-redshift, ~30% galaxies are peculiar

Correlation with Hubble type

Figure 2 Global galaxy parameters vs morphological type. Circles represent the RC3-UGC sample; squares the RC3-LSc sample. Filled symbols are mediane; open ones are mean values. The lower bar is the 25^{th} percentile, the upper the 75^{th} percentile. Their range measures half the sample. The sample size is given in Table 1. (a) log linear radius R_{bb}(kpc) to an isophote of 25 B mag/across², (b) log bloc huminosity as in solar units, (c) log total mass M_T in solar units, (d) log total mass to-huminosity ratio M_T/L_B .

124 ROBERTS & HAYNES

Figure J Same as Figure 2, for (a) optical (blue) surface brightness Σ_B , (b) log FIR surface density σ_{FB} , (c) log total mass surface density Σ_T , (d) log HI surface density σ_{E} . Dashed lines delineate the types with significantly fewer data.

.

· Correlation with Hubble type

THE HUBBLE SEQUENCE

125

•

Figure 4 Same as Figure 2, for (a) log total HI mass $M_{\rm HI}$, (b) log HI mass 40-blue luminosity ratio $M_{\rm HI}/L_B$, (c) log HI mass fraction $M_{\rm HI}/M_T$, (d) log FIR luminosity $L_{\rm FIR}$. The dashed lines indicate significantly fewer data for these types.

• • • • • • • • •

Other Classification Systems

- Revised Hubble system
 - de Vaucouleurs 1958, Handbuch der Phys, 53, 275
 - de Vaucouleurs 1964, Reference Catalog of Bright Galaxies (RC1)
 - goal: retain basic system, add more information

mixed types:	E/SO, Sab, Sbc, etc
intermediate barred:	SA, SAB, SB
extended types:	Sd, Sm, Sdm
inner rings:	5(r) , 5(s)
outer rings:	(R) 5

- Magellanic spirals, irregulars: Sm, Im
- t-type numerical scale: E0 -- S0 -- Sa -- Sb -- Sc -- Im

 \bullet

-5 -- -1 --- 1 --- 3 --- 5 --- 9

NGC 1300

(R)SB(r)ab

SB(rs)bc

Quantitative Classification

- Motivation
 - automated classification is needed for very large imaging or spectroscopic surveys (e.g., Sloan Digital Sky Survey = SDSS)
 - can obtain objective measures, that are less susceptible to systematic or subjective effects
 - the current morphological sequence may not be representative of galaxies at earlier cosmic epochs
 - since many physical and spectral properties of galaxies correlate with type, a physical classification system can be created

 \bullet

 parametric classifications provide information on the dimensionality of the galaxy parameter space Example 1: Quantitative image classification
Abraham et al. 1994, ApJ, 432, 75
Abraham et al. 1996, MNRA5, 279, L49

- simple 2-parameter system

Luminosity Function

• galaxies span enormous luminosity range: $M_B = -24$ to -10

- luminosity distribution well constrained for M_B < -15
- parametrization: Schechter 1976, ApJ, 203, 297

 $\Phi(L) = \Phi(L^*) (L/L^*)^{\alpha} e^{-L/L^*}$

Brown et al 2001, AJ, 122, 297 (CfA)

- Form of LF at faint luminosities still uncertain, controversial
- LF is strong function of galaxy type
- LF probably is dependent on galaxy environment

Binggeli, Sandage, Tammann 1988, ARAA, 26, 509

Fig. 4.2. The Local Group: our Milky Way is at the origin. Spirals are designated S; asterisks show the Magellanic Clouds; filled stars mark irregular galaxies; circles are ellipticals or dwarf ellipticals (filled) and dwarf spheroidals (open). Left, positions projected onto the Galactic plane; axis x points to the Galactic center, y in the direction of the Sun's orbital motion. The arrow shows the direction of view in the right panel. Right, view perpendicular to the plane containing M31 and axis z toward the north Galactic pole; the dotted line marks the Galactic midplane. Many of the Milky Way's satellites, including the Magellanic Clouds, lie near a single plane.

Fig. 4.3. Galaxy concentrations within $80h^{-1}$ Mpc of the Local Group: the 'mesh' encloses regions where the density is $\gtrsim 50\%$ above average. The filled dot gives our position at the origin, and axes x, y, z are as in Figure 4.2. Distance d to each galaxy is calculated from Hubble's law: axes show H_0d in km s⁻¹. Objects from Abell's catalogue of galaxy clusters are denoted A. Left, view from $(l, b) = 35^\circ$, 25°, perpendicular to the supergalactic X–Y plane; right, view from $(l, b) = 125^\circ$, 25°, looking nearly along that plane – M. Hudson 1993 *MNRAS* 265, 43.

• <u>Movie</u>

Fate of Local Group

• <u>Night Time View</u>

LMC and SMC

Sagittarius Dwarf

System	L_V $(10^7 L_{\odot})$	σ_r (km s ⁻¹)	(pc)	r_t (pc)	(Gyr)	\mathcal{M}/L_V $(\mathcal{M}_\odot/L_\odot)$	$log_{10}(Z/Z_{\odot})$ range
NGC 147 dE	12	20-30	260	1000	3-5	7 ± 3	-1.5 to -0.7
NGC 185 dE	13	20	170	2000	< 0.5	5 ± 2	-1.2 to -0.8
Pegasus dIrr	1	9(H1)		500(HI)	< 0.1	2-4	-2.3 to -1.7
Fornax dSph	1.5	13	400	5000	<2	~15	-2 to -0.4
M33 nucleus	0.25	24	< 0.4		<1:	~1	-1.9 to -0.7
Sculptor dSph	0.2	9	200	2000	>10	~ 10	-2.6 to -0.8
ω Cen gc	0.1	20	4	70	>10	2.5	-1.6 to -1.2
M15 gc	0.04	12	< 0.01	85	>10	2	-2.15
Carina dSph	0.04	7	200	900	2-10	~40	-2.7 to -0.3
M92 gc	0.02	5	0.5	50	>10	1.5	-2.15

Table 4.2 Dwarf galaxies, compared with the nuclear star cluster of M33, and three Milky Way globular clusters

Note: The velocity dispersion σ_r is highest at the center; at the core radius r_c , the surface brightness falls to half its central value, dropping to near zero at truncation radius r_t ; t_{sf} the time since last significant star formation, with : indicating an uncertain value; Z/Z_{\odot} is metal abundance compared with that of the Sun. HI denotes a measurement from HI gas, not stars; globular clusters are labelled gc.

• <u>Sagittarius movie</u>

M31 tidal streams

Question: Assembly of Milky Way

?

Galactic Archaeology

- Stellar halo largely built up as stellar streams with different degrees of phasemixing
- Stars collisionless: encode halo formation history
- Test of hierarchical structure formation
- Near-field cosmology

missing satellite problem

Astro-News: Oldest Star in the Universe

• what NPR has to say?

A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3

S. C. Keller¹, M. S. Bessell¹, A. Frebel^{*}, A. R. Casey¹, M. Asplund¹, H. R. Jacobson^{*}, K. Lind^{*}, J. E. Norris¹, D. Yong¹, A. Heger⁺, Z. Magic¹, G. S. Da Costa¹, B. P. Schmidt¹, & P. Tisserand¹

The quest for the most metal poor stars

- PopIII star: zero metallicty
 - first generation stars are supposed to be massive
 - no elements other than H and He
 - never found, maybe aren't any around today
- Second generation star: extremely metal poor
 - can be <solar mass</p>
 - chemical abundance pattern consistent with one supernova pollution

How to Find Metal Poor Stars?

The new most metal poor star: [Fe/H] <-7

A second generation star: progenitor is a low-energy SN

Homework 3

Chap 3: 3.2, 3.5, 3.19, 3.20
Chap 4: 4.5, 4.6
due Feb 27