Assignment 4
Astronomy 541

Assignment: Due Tuesday, Oct 28, in class

Problem 1 (5 pts): For $\Omega_m = 1$ and $c_s = 0$, show that the gravitational potential ϕ of a growing-mode perturbation is time independent (as usual, ignore the homogeneous term in the Poisson equation).

Argue that in a low-density universe, where the growth lags behind $D \propto R$ and eventually converges to a constant, the gravitational potential decays to zero.

Problem 2 (5 pts): In class, we derived the following differential equation for the evolution of the amplitude of small perturbations:

$$\frac{d^2 D}{dt^2} + 2H \frac{dD}{dt} = \left(4\pi G \rho_h - \frac{c_s^2 k^2}{R^2}\right) D$$

Remember that H and ρ_h (the average density of the universe) are functions of time.

a) For pressureless matter in an open universe with $\Lambda = 0$, the above equation has the solution

$$D(t) = 1 + \frac{3}{x} + \frac{3\sqrt{1+x}}{x^{3/2}} \ln \left[\sqrt{1+x} - \sqrt{x}\right],$$

where $x = R(t)(1 - \Omega_m)/\Omega_m$ and $R = 1$ today. Here, Ω_m is the density of matter.

If $\Omega_m = 0.3$, by what factor has the amplitude of perturbations grown between $z = 99$ and today? Between $z = 1$ and today? Compare these results to the those in an $\Omega_m = 1$ universe.

b) For Λ cosmologies, the solution for the growth function requires special functions (elliptic functions or beta functions). However, there is a fitting formula (Carroll, Press, Turner 1992, adapted from Lahav et al 1991) that holds for matter-dominated universes with curvature and Λ.

The formula says that the growth function at $z = 0$ relative to that at a large initial z is

$$\frac{D(0)}{D(z_i)(1 + z_i)} = \frac{5\Omega_m}{2} \left[\Omega^{4/7}_m - \Omega + (1 + \Omega_m/2)(1 + \Omega/70)\right]^{-1}$$

At large z the growth function scales as $(1 + z)^{-1}$, so we don’t need to specify a particular z_i.

Using the formula, compute the factor by which the amplitude of structure has grown from $z = 99$ to $z = 0$ for a universe of $\Omega_m = 0.3$ and $\Omega_\Lambda = 0.7$. Compare this to the open universe in part (a) and to the $\Omega_m = 1$ case. You might want to try checking your results from part (a) too!

For future reference, to apply this formula to get the growth at other redshifts, you have to rescale Ω_m and Ω_Λ to the value that an observer at that redshift would measure and then divide by $1 + z$ to accomplish a rescaling of z_i. If that’s confusing, consider the formula for $\Omega_m = 1$ and $\Omega_\Lambda = 0$ to understand the z_i correction and then consider that the formula is essentially saying how much a cosmology’s growth lags that of Einstein-de Sitter given a common beginning.
Problem 3 (10 pts): The power spectra of cold dark matter cosmologies typically have \(P(k) \propto k \) at small \(k \) and \(P(k) \propto k^{-3} \) at large \(k \). For simplicity, we will adopt the form (not completely accurate!)

\[
P(k) = \frac{Ak}{(1 + k^2 s^2)^2}
\]

where \(s \) is the break radius, which we’ll choose to be \(20h^{-1} \) Mpc. \(A \) is a (as yet arbitrary) normalization. Note: this power spectrum only holds at early times when the perturbations are small. It is therefore called the “linear-regime” power spectrum. At late times, non-linear evolution will alter this spectrum.

In class, we derived that the mean square variation in a region defined by a window function \(W(r) \) is

\[
\sigma^2 = \frac{1}{2\pi^2} \int_0^\infty dk \ k^2 P(k) \left| \hat{W}(k) \right|^2
\]

where \(\hat{W} \) is the Fourier transform of \(W \) and where \(W(r) \) is normalized to have unit integral over all space, i.e. \(\int d^3r \ W(r) = 1 \). Note that the last assertion implies that \(\hat{W}(0) = 1 \).

a) What are the dimensions of \(P \) and \(A \)?

b) At what \(k \) is \(P \) maximized?

c) In class, we used a window that was non-zero and constant only inside a radius \(R \). This is called a spherical tophat. The Fourier transform of this window was \(3j_1(kR)/kR \). Unfortunately, computing \(\sigma \) for a given \(R \) with this window requires a numerical integration.

Instead, consider a window whose Fourier transform is unity inside of a radius \(K \) (and zero outside). In cosmology, this is called a “sharp \(k \)-space” filter, but everyone else would just call it a low-pass filter. The real-space \(W(r) \) is a little messy—it rings and damps only slowly—but it still has a typical scale, which is approximately \(R = \pi/2K \). The coefficient here seems strange (why not \(2\pi/R \) or \(1/R \)?) but there is an odd logic: the diameter of the sphere is \(2R \) and the mean square overdensity should be dominated by waves that have a half wavelength equal to this diameter.

For this filter, compute \(\sigma \) as a function of \(K \) and hence of \(R \).

Compute the limits of \(\sigma \) for small and large \(K \). Does the answer to part (b) look special, e.g. does it correspond to a maximum in \(\sigma \)?

d) Normalize (i.e. find \(A \)) the power spectrum by forcing \(\sigma = 0.9 \) for \(R = 8h^{-1} \) Mpc. Note: Cosmologist very often refer to \(\sigma_8 \), which is nearly this quantity, but computed with the real-space spherical tophat window.

What is the value of \(\sigma \) for \(R = 0.8h^{-1} \) Mpc? For \(R = 80h^{-1} \) Mpc?

e) Length scales may not mean much to you yet, so instead let’s convert to mass scales by using \(M = (4\pi/3)\rho_c \Omega_m R^3 \). Consider \(\Omega_m = 0.3 \) and \(h = 0.7 \). Compare the scales in parts (d) and (e) to those of galaxies and clusters.