
Assignment 6

Astronomy 541

Assignment: Due Friday, Nov 30

For the first two problems, you can use the fact that the comoving distance r between us and

z = 3 is c/H0 in Ωm = 1 and 1.48c/H0 in Ωm = 0.3 ΛCDM. Similarly, the growth function between

us and z = 3 is 4 in Ωm = 1 and 3.13 in the low-density case. From z = 1, the growth is 2 and

1.63, respectively. For these problems, use the ΛCDM case except where noted.

In the ΛCDM cosmology (e.g. from Planck), the rms overdensity σ8 on scales of 8h−1 Mpc

is about 0.8 today. On scales of 1.42h−1 Mpc (1012h−1 M�), the overdensities are 2.3 today. On

the 8h−1 Mpc scale, the effective spectral index neff is about −1.5, while on the smaller scale,

neff ≈ −2.0. Recall that neff is defined so that σM ∝M−(neff+3)/6.

Press-Schechter formalism states that the comoving density of halos is
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with ν = 1.69/σM , where ρm is the present-day density of matter (= Ωmρcrit).

You don’t need to specify a Hubble constant for these problems if you leave masses in h−1 M�
units and lengths in h−1 Mpc units. In these units, the critical density ρcrit = 2.78×1011h2 M� Mpc−3.

Problem 1 (7 pts): Cosmology from cluster counts: Because of the exponential cutoff in

the Press-Schechter mass function, objects with ν � 1 have number densities that are very sensitive

to the exact value of ν and hence to σ.

With low-redshift clusters of galaxies, we believe that we can estimate their masses fairly well

(more on this in a few weeks). Let’s say that we have gathered a complete sample of clusters down

to a mass threshold of 5× 1014h−1 M� (to be set equal to the M in the Press-Schechter formalism)

in some volume.

a) For the ΛCDM cosmology described above, what is the number density of clusters per

logarithmic mass at this mass scale? Note: To compute ν, you will need to compute σ on this mass

scale. The easiest way is to convert 8h−1 Mpc to a mass scale, and then scale σ in mass from σ8

using the appropriate neff .

b) Now imagine reducing the normalization of the power spectrum by 20%, so that σ8 is de-

creased by 10%. How much does this change the number density of clusters?

This sensitivity to cluster counts has proved an effective way to normalize the power spectrum.

c) Let’s now compare ΛCDM to Ωm = 1 Einstein-de Sitter. How must we change the normal-

ization σ8 to keep the Press-Schechter prediction of the number densities constant at fixed M? In

other words, if we have σ8 = 0.8 in the ΛCDM cosmology, what must be the value of σ8 in the

Einstein-de Sitter case to match the observed number density?
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The value of Ωm enters in two places: the density ρm in the Press-Schechter formula to get σ,

and the conversion from σ on mass scale M to σ8. There is no closed form solution for σ; you will

need to compute this numerically (or by trial-and-error with a calculator).

Your answer (which could be used in the next part) should be close to 0.5.

d) Next, imagine that you construct a sample of clusters at z = 1 with the same mass threshold

of 5× 1014h−1 M�. What is the predicted comoving number density of these objects in the ΛCDM

cosmology? In Einstein-de Sitter? By scanning volumes of ∼ 1010h−3 Mpc3, a sizeable number of

z ∼ 1 clusters have been observed. What can you conclude from this?

Problem 2 (7 pts): LBG halo masses: Lyman break galaxies (LBGs) at z ≈ 3 are observed

to have a number density about 10% of that of galaxies today. They are also observed to be

significantly clustered, with a rms overdensity in spheres of 8h−1 comoving Mpc of about 1.0. In

this problem we will use Press-Schechter formalism to estimate the mass of the dark matter halos

that LBGs live in. Assume ΛCDM with Ωm = 0.3 throughout this problem.

a) LBGs are observed to have a density on the sky of 0.4 per square arcminute in a redshift

shell of ∆z = 0.5. Compute the number density, in units of comoving h3 Mpc−3. It is sufficient to

get the volume by (dV/dz)∆z.

b) Estimate the typical mass of halo that contains an LBG, assuming that all halos down to

that mass contain a single LBG, and halos below that mass do not contain an LBG. In effect, this is

a maximum possible halo mass for LBGs, since there is probably not such a monatonic one-to-one

relation between halo mass and LBGs.

To do this, you may need to iterate a bit: solve for M holding ν constant, then compute ν for

that mass (scaling from the number above for 1× 1012h−1 M� and including the growth function),

and repeat to convergence. At our level of accuracy, it is enough to treat the number density as

coming from one e-folding in mass and to neglect integrating over the more massive halos that

might contain more than one galaxy.

c) An independent way of estimating LBG halo masses is through their clustering. Halos

of a given mass have a given level of clustering, corresponding to a bias relative to the overall

matter distribution, where bias b = σLBG/σmatter. Simple models relate bias to ν through b =

(ν2− 1)/1.69 + 1. Taking b to be the ratio of the observed variance on the 8h−1 Mpc scale and the

overall matter variance on that scale (i.e. σ8 at z = 3), compute the value of ν assuming that all

of the galaxies are drawn from a single mass scale of halo.

Convert this value of ν to a mass scale. How does this compare to the answer in part (a)?

Factors of two in mass are a success in this game; however, factors of two in clustering strength or

bias are not good.

d) The halo mass scale of LBGs could be smaller if the fraction of halos containing an LBG is

small. A popular early model postulated that LBGs are not always ‘on’, but instead have some

duty cycle during which they vigorously form stars and hence are observable as LBGs. If the duty

cycle were 1%, then the number density of host halos must be 100 times larger.

Repeat part (b) with this density to get a mass scale, then use the formula in part (c) to get

a predicted bias for LBGs in this scenario. Compare this with the observed bias from clustering.
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How badly does this prediction fare? What can you conclude about LBG halo masses?

Problem 3 (6 pts): In this problem we will compute halo cooling radii. Consider a halo

with mass M200. Assume that it contains purely pressure-supported hot gas with a density profile

following NFW, (i.e., we will ignore the pressure support provided by the hot gas):

ρ(r) =
ρsr

3
s

r(r + rs)2

with a concentration defined as c = r200/rs.

The gas temperature is everywhere given by the halo virial temperature; this is not exactly true

for NFW, but we will ignore the deviations. Assume Ωm = 0.3, Ωb = 0.045 and h = 0.7, and that

the halo contains its cosmic share of baryons.

a) What is the virial temperature T of the halo in terms of M200? Compute T for a 1015M�
halo.

b) What is ρs in terms of c and M200? From this, derive the electron density ne,s at rs for a

fully ionized H plasma (ignore He or metals). Compute ne,s for a halo with c = 10.

c) Derive an implicit formula for the cooling radius rc as a fraction of the virial radius r200 (i.e.

rc/r200), in terms of the Hubble time, ne,s, c, T (or M200), and the cooling rate Λ.

d) Now let’s put all this together: Consider a 1015M� halo with c = 10 at z = 0. What is

the cooling radius as a fraction of the virial radius? For the cooling rate, assume purely free-free

emission having Λ = 1.7× 10−27T 1/2 erg cm3 s−1. It is sufficient to solve the implicit equation for

rc/r200 by trial-and-error.

e) Do the same for a 1014M� halo (also with c = 10). Does this smaller halo cool out a greater

or lesser fraction of its hot gas in a Hubble time?

Problem 4 (10 pts): In a warm ionized hydrogen plasma, the rate per unit volume of recombi-

nations is αneni where α ≈ 4.2× 10−13T−0.7
4 cm3 s−1, ne is the number of free electrons, ni is the

number of free protons, and T4 is the gas temperature in units of 104 Kelvin.

When exposed to a bath of UV photons with energies above 13.6 eV, the ionization rate per

unit volume is ΓHInHI , where nH1 is the number of neutral hydrogen atoms and ΓHI ≈ 4.3 ×
10−12J21 s−1. Here, J21 is the specific intensity per unit frequency of the UV spectrum in units of

10−21 ergs cm−2 s−1 sr−1 Hz−1 as averaged over the ionization cross-section of hydrogen (i.e. one

is approximately to evaluate the Jν of the UV spectrum at a frequency just above 13.6 eV; don’t

worry about this detail). Remember that converting a specific intensity into the number of photons

impinging on a point from an isotropic distribution involves multiplying by a factor of 4π.

a) Show that in the limit of high ionization, the steady-state neutral fraction depends linearly

on density and inversely on the incident UV flux.

b) J21 has been estimated by adding up contributions from source populations (namely quasars

and star forming galaxies); see e.g. Haardt & Madau (1996,2001). Assuming a baryon density of

Ωbh
2 = 0.024 and J21 = 0.3, compute the neutral fraction at the cosmic mean baryon density, for

an IGM temperature of 15,000 K, at z = 3.
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c) If J21 is independent of redshift (which is correct to within a factor of two from z ∼ 4→ 1),

what is the redshift dependence of the mean transmission of HI Lyman-α for a purely homogeneous

IGM? Be sure to include the redshift dependence of the path length per unit velocity; you may

assume matter domination.

d) The cross-section for a hydrogen atom in the ground state to be ionized by a single UV

photon of frequency ν is approximately A0(ν1/ν)2.8 for ν ≥ ν1, where A0 = 6.3× 10−18cm2 and ν1

is the threshold frequency (i.e. 13.6 eV). This formula is good to about 4% for 1 < ν/ν1 < 4, but

fails at higher energy.

At high redshift, there are fewer sources of ionizing photons and hence J21 is lower, though by

how much is uncertain. Assuming J21 = 0.1 at z = 7 and Ωbh
2 = 0.024, compute the mean free

path of a UV photon at z ≈ 7 as a function of energy. For what energy is that mean free path

larger than the Hubble distance?

This calculation is interesting, especially at higher redshifts, because it implies that the UV

spectrum in the IGM is harder than that of the UV sources. In short, at high energies, one can see

all the sources in the universe; at low energies, one can only see the nearby ones.


