
Solutions for Assignment 3

Astronomy 541

Problem 1 (5 pts): In a universe dominated by radiation, we can write the Hubble constant as
H(z) = H0

√
Ωr(1 + z)4. Strictly speaking, if the universe if flat and has only radiation, then we

have Ωr = 1, but it is useful to include this parameter, since it describes a universe dominated by
radiation at early times while permitting us to connect the results to a current Hubble constant
and radiation density.

With this, we have
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and
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The only differences between these formulae and our earlier formulae are the limits of integration.

Note the scalings of rH(z): ct is the physical distance travelled, 1+z corrects this to a comoving
distance assuming that all of the travelling was done at the final redshift z, and a factor of 2 corrects
for the fact that travel at earlier times was slightly more efficient in terms of comoving distance.

Problem 2 (5 pts): a) Now we use H(z) = H0
[
Ωr(1 + z)4 + Ωm(1 + z)3

]1/2. The integral can
be done by changing variables to R = (1 + z)−1. dR = −dz/(1 + z)2 or dz = −dR/R2. It is useful
to define the epoch of matter-radiation equality as 1 + zeq = Ωm/Ωr.

For the comoving distance, we have
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where y = (1 + zeq)/(1 + z) ∝ R.

For early times with y � 1, the term in square brackets is y/2, which yields
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as in Problem 1.

b) We use Ωrh
2 = 4.2 × 10−5 and Ωmh

2 = 0.147, so 1 + zeq = 3500. At z = 1000, we have
y = 3.5, which makes rH = 0.069c/H0 = 208h−1 Mpc.

At z = 3500, we have y = 1, which makes rH = 0.026c/H0 = 77h−1 Mpc.
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Obviously these comoving distances are much smaller than the current size of the observable
universe!

Problem 3 (5 pts): The optical depth can be computed as an integral along the line of sight of
the cross-section times the density of free electrons.
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We will use H(z) = H0

√
Ωm(1 + z)3. I had only required Ωm = 1, but this form allows us to

compute the optical depth at z � 1 for other cosmologies.

The number density of free electrons will scale as (1 + z)3. The present day value is
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where mp is the mass of the proton.

The optical depth is then
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where the last line assumes z � 1 (consistent with our H(z) approximation).

If h = 0.7 and Ωm = 1, then τ will reach unity at z = 82.

In fact, we expect that the universe becomes reionized at z = 10 or 20. For such redshifts, the
optical depth is substantially less than 1, but it is still noticeably non-zero (τ ≈ 0.15). The WMAP
satellite claims to see a signature of this optical depth!

Problem 4 (5 pts): a) If X decouples when the universe is much hotter than mXc
2, then it will

be in a ultrarelativistic thermal distribution. Since X is a boson and there are two spin states (X
and X̄), the number density will be the same as the photons. Today, that is 411 cm−3.

ΩX = ρX/ρc = mXnX/ρc, so ΩXh
2 = 4 × 107(mXc

2/1 GeV)! This is vastly more than is
observed.

An additional (and optional) refinement is to include the extra heating of the photons since the
universe had a temperature of � 1 GeV. We know that there is a factor of (4/11)1/3 getting back
to a few MeV. At that time, g∗ = 10.75, 2 for photons, 2×2× (7/8) for electrons, and 6×1× (7/8)
for neutrinos. At � 1 GeV, we would have additional factors of 4(7/8) each for the muon and tau
leptons, 8 for gluons, and 2 × 2 × 3 × (7/8) for each quark (say, 5 neglecting the top quark; here
we have 2 spins and 3 colors plus antiquarks), so g∗ ≈ 80. Hence, the annihilation of these species
between 1 MeV and 10 GeV would increase the temperature at late times by another factor of
∼ 81/3. Taking these together, we would predict that the number of X particles is suppressed by
a factor of 20. At � 100 GeV, we would have additional terms for the W and Z bosons, the top
quark, and perhaps the Higgs sector, further reducing the X abundance.


