Solutions for Assignment 3

Astronomy 541

Problem 1 (5 pts): In a universe dominated by radiation, we can write the Hubble constant as $H(z)=H_{0} \sqrt{\Omega_{r}(1+z)^{4}}$. Strictly speaking, if the universe if flat and has only radiation, then we have $\Omega_{r}=1$, but it is useful to include this parameter, since it describes a universe dominated by radiation at early times while permitting us to connect the results to a current Hubble constant and radiation density.

With this, we have

$$
\begin{equation*}
t(z)=\int_{z}^{\infty} \frac{d z}{(1+z) H(z)}=\frac{1}{H_{0} \sqrt{\Omega_{r}}} \int_{z}^{\infty} \frac{d z}{(1+z)^{3}}=\frac{1}{H_{0} \sqrt{\Omega_{r}}} \frac{1}{2(1+z)^{2}}=\frac{1}{2 H(z)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{H}(z)=\int_{z}^{\infty} \frac{c d z}{H(z)}=\frac{c}{H_{0} \sqrt{\Omega_{r}}} \int_{z}^{\infty} \frac{d z}{(1+z)^{2}}=\frac{c}{H_{0} \sqrt{\Omega_{r}}} \frac{1}{(1+z)}=\frac{c(1+z)}{H(z)}=2 c t(z)(1+z) \tag{2}
\end{equation*}
$$

The only differences between these formulae and our earlier formulae are the limits of integration.
Note the scalings of $r_{H}(z)$: ct is the physical distance travelled, $1+z$ corrects this to a comoving distance assuming that all of the travelling was done at the final redshift z, and a factor of 2 corrects for the fact that travel at earlier times was slightly more efficient in terms of comoving distance.

Problem 2 (5 pts): a) Now we use $H(z)=H_{0}\left[\Omega_{r}(1+z)^{4}+\Omega_{m}(1+z)^{3}\right]^{1 / 2}$. The integral can be done by changing variables to $R=(1+z)^{-1} . d R=-d z /(1+z)^{2}$ or $d z=-d R / R^{2}$. It is useful to define the epoch of matter-radiation equality as $1+z_{e q}=\Omega_{m} / \Omega_{r}$.

For the comoving distance, we have

$$
\begin{align*}
r_{H}(z) & =\int_{z}^{\infty} \frac{c d z}{H(z)}=\frac{c}{H_{0}} \int_{0}^{(1+z)^{-1}} \frac{d R}{R^{2} \sqrt{\Omega_{r} R^{-4}+\Omega_{m} R^{-3}}}=\frac{c}{H_{0}} \int_{0}^{(1+z)^{-1}} \frac{d R}{\sqrt{\Omega_{r}+\Omega_{m} R}} \tag{3}\\
& =\frac{2 c}{H_{0} \Omega_{m}}\left[\sqrt{\Omega_{r}+\Omega_{m} R}\right]_{0}^{(1+z)^{-1}}=\frac{2 c}{H_{0} \sqrt{\Omega_{m}}}\left[\sqrt{\frac{\Omega_{r}}{\Omega_{m}}+\frac{1}{1+z}}-\sqrt{\frac{\Omega_{r}}{\Omega_{m}}}\right] \tag{4}\\
& =\frac{2 c}{H_{0} \sqrt{\Omega_{m}} \sqrt{1+z_{e q}}}[\sqrt{1+y}-1] \tag{5}
\end{align*}
$$

where $y=\left(1+z_{e q}\right) /(1+z) \propto R$.
For early times with $y \ll 1$, the term in square brackets is $y / 2$, which yields

$$
\begin{equation*}
r_{H}(z) \rightarrow \frac{c \sqrt{1+z_{e q}}}{H_{0} \sqrt{\Omega_{m}}(1+z)}=\frac{c(1+z)}{H_{0} \sqrt{\Omega_{r}(1+z)^{2}}}=\frac{c(1+z)}{H(z)} \tag{6}
\end{equation*}
$$

as in Problem 1.
b) We use $\Omega_{r} h^{2}=4.2 \times 10^{-5}$ and $\Omega_{m} h^{2}=0.147$, so $1+z_{e q}=3500$. At $z=1000$, we have $y=3.5$, which makes $r_{H}=0.069 c / H_{0}=208 h^{-1} \mathrm{Mpc}$.

At $z=3500$, we have $y=1$, which makes $r_{H}=0.026 c / H_{0}=77 h^{-1} \mathrm{Mpc}$.

Obviously these comoving distances are much smaller than the current size of the observable universe!

Problem 3 (5 pts): The optical depth can be computed as an integral along the line of sight of the cross-section times the density of free electrons.

$$
\begin{equation*}
\tau=\int d \ell \sigma_{T} n_{e}=\int d t c \sigma_{T} n_{e}=\int \frac{c d z}{(1+z) H(z)} \sigma_{T} n_{e} \tag{7}
\end{equation*}
$$

We will use $H(z)=H_{0} \sqrt{\Omega_{m}(1+z)^{3}}$. I had only required $\Omega_{m}=1$, but this form allows us to compute the optical depth at $z \gg 1$ for other cosmologies.

The number density of free electrons will scale as $(1+z)^{3}$. The present day value is

$$
\begin{equation*}
n_{e, 0} \approx \frac{\rho_{b}}{m_{p}}=\frac{\Omega_{b} \rho_{c r i t}}{m_{p}}=\Omega_{b} h^{2} \frac{1.88 \times 10^{-29} \mathrm{~g} \mathrm{~cm}^{-3}}{m_{p}}=1.12 \times 10^{-5} \Omega_{b} h^{2} \mathrm{~cm}^{-3} \tag{8}
\end{equation*}
$$

where m_{p} is the mass of the proton.
The optical depth is then

$$
\begin{align*}
\tau & =\int_{0}^{z} d z \frac{c \sigma_{T} n_{e, 0}(1+z)^{3}}{H_{0} \sqrt{\Omega_{m}}(1+z)^{5 / 2}}=\frac{2 c \sigma_{T} n_{e, 0}}{3 H_{0} \sqrt{\Omega_{m}}}\left[(1+z)^{3 / 2}-1\right] \tag{9}\\
& =9.2 \times 10^{-4} h^{-1}(1+z)^{3 / 2} \Omega_{m}^{-1 / 2}\left(\frac{\Omega_{b} h^{2}}{0.02}\right) \tag{10}
\end{align*}
$$

where the last line assumes $z \gg 1$ (consistent with our $H(z)$ approximation).
If $h=0.7$ and $\Omega_{m}=1$, then τ will reach unity at $z=82$.
In fact, we expect that the universe becomes reionized at $z=10$ or 20 . For such redshifts, the optical depth is substantially less than 1 , but it is still noticeably non-zero ($\tau \approx 0.15$). The WMAP satellite claims to see a signature of this optical depth!

Problem 4 (5 pts): a) If X decouples when the universe is much hotter than $m_{X} c^{2}$, then it will be in a ultrarelativistic thermal distribution. Since X is a boson and there are two spin states (X and \bar{X}), the number density will be the same as the photons. Today, that is $411 \mathrm{~cm}^{-3}$.
$\Omega_{X}=\rho_{X} / \rho_{c}=m_{X} n_{X} / \rho_{c}$, so $\Omega_{X} h^{2}=4 \times 10^{7}\left(m_{X} c^{2} / 1 \mathrm{GeV}\right)$! This is vastly more than is observed.

An additional (and optional) refinement is to include the extra heating of the photons since the universe had a temperature of $\gg 1 \mathrm{GeV}$. We know that there is a factor of $(4 / 11)^{1 / 3}$ getting back to a few MeV . At that time, $g_{*}=10.75,2$ for photons, $2 \times 2 \times(7 / 8)$ for electrons, and $6 \times 1 \times(7 / 8)$ for neutrinos. At $\gg 1 \mathrm{GeV}$, we would have additional factors of $4(7 / 8)$ each for the muon and tau leptons, 8 for gluons, and $2 \times 2 \times 3 \times(7 / 8)$ for each quark (say, 5 neglecting the top quark; here we have 2 spins and 3 colors plus antiquarks), so $g_{*} \approx 80$. Hence, the annihilation of these species between 1 MeV and 10 GeV would increase the temperature at late times by another factor of $\sim 8^{1 / 3}$. Taking these together, we would predict that the number of X particles is suppressed by a factor of 20 . At $\gg 100 \mathrm{GeV}$, we would have additional terms for the W and Z bosons, the top quark, and perhaps the Higgs sector, further reducing the X abundance.

