
Solutions for Assignment 6

Astronomy 541

Problem 1 (10 pts): a) First, the comoving matter density is Ωmρcrit = 8.3×1010h2M� Mpc−3.

A sphere of radius 8h−1 Mpc has a mass of 1.8×1014h−1M�. Hence, σ on the 5×1014h−1M� scale

will be σ8(5/1.8)−(3−1.5)/6) = 0.62. This makes ν = 2.73. The density of clusters per logarithmic

mass can then be computed with the formula to be 2× 10−6h3 Mpc−3.

b) If the normalization of the power spectrum drops by 20%, then σ8 and σ5e14 will be lower

by 10%. This makes ν = 3.04. The number of clusters will be 1.0× 10−6h3 Mpc−3, a drop of 40%.

In other words, it doesn’t take a very precise measurement of the abundance of galaxy clusters

to get a good constraint on the power spectrum amplitude.

c) If we now switch to Einstein-de Sitter and want to keep the number of clusters of this mass

the same, then we will need to adjust ν because the pre-factor ρm is larger. One finds that one

needs ν = 3.19 to make the same number of clusters, implying σ = 0.53 on the cluster scale.

Next, a sphere of radius 8h−1 Mpc now contains 6.0× 1014h−1M�. σ = σ8(5/6)−1/4, so we find

that σ8 = 0.55.

d) At higher redshift, the values of σ are changed by the growth function. In ΛCDM, we have

ν = 4.45, so the comoving number density is 7times10−9h3 Mpc−3. This is small, but there’s about

1010h−3 Mpc3 per steradian in the universe to that redshift, so one would find one of these clusters

every 20 square degrees or so.

In Einstein-de Sitter, we have ν = 3.05 ∗ 2 = 6.4. This makes the comoving number density

1× 10−12h3 Mpc−3, about 104 times lower than the ΛCDM case! One predicts no massive clusters

at high redshift in this model!

The arguments in this problem have been important in cosmological parameter estimation.

Einstein-de Sitter models require a normalization of σ8 at z = 0 that is fairly low. Galaxies are

observed to have σ8,gal ≈ 1, so they must be highly biased in this model (b ≈ 2). The observation

of massive clusters at high redshift is very difficult to explain with Ω = 1. However, the Achilles

heel of this method is that one must have an accurate estimate of the mass of the clusters in one’s

sample. The exponential sensitivity of the numbers to σ also means that one is exponentially

sensitive to errors in the mass measurements. This is particularly a problem at high redshift where

the observations are more limited. For example, the mass function dn/dM is so steep at the high

mass end that the largest clusters are very likely to be lower mass objects that have scattered up

in their mass estimates by bad luck or some astrophysical variance.

Problem 2 (10 pts): a) The comoving volume per steradian per unit redshift is dV/dΩ dz =

(c/H)S[r(z)]2 = (c/H)r2. At z = 3, r = 1.48c/H0 and H = 4.46H0 in this cosmology. Hence, we

have 1.3×1010h−3 Mpc3 per steradian per unit redshift, which is 560h−3 Mpc3 per square arcminute

per half redshift. Hence, the comoving number density of these galaxies is 7× 10−4h3 Mpc−3.

b) Taking the above density as dn/d log(M) and using neff = −2, we have

M = 1.6× 1013h−1M�νe
−ν2/2 (1)
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For ν, we use that σ = 2.3/3.13 = 0.73 on the 1012h−1M� mass scale at z = 3. Scaling from that

mass with neff gives σ = 0.73(M/1012h−1M�)−1/6 and ν = 2.32(M/1012h−1M�)1/6. Inserting this

into (1) yields a transcendental equation for M . One can either solve this by iteration or by simple

root-finding. The result is M = 1.67× 1012h−1M� and ν = 2.53.

Unfortunately, simple iteration is unstable for these parameters (although it is stable for masses

below about 7 × 1011h−1M�, e.g. part d). The mass at each step oscillates on either side of the

true solution but with an increasing amplitude. A general trick in these circumstances for getting

(or improving) convergence is to take two iteration steps and use the average of them for the next

double step. This changes the series from an oscillating divergence to a monotonic convergence.

c) We predict σ8 = 0.85/3.13 = 0.27 for the mass, but we observe σ8 ≈ 1 for the galaxies.

This implies a bias of 3.7! That in turn requires ν = 2.36 in the simple bias model. That value is

achieved for halos of 1.1× 1012h−1M�.

It is counted as a success of the theory that these mass estimates agree to a factor of two!

d) If the duty cycle of having a detectable galaxy was only 1%, then we would require a density

of halos of 0.07h3 Mpc−3. That occurs in halos of mass 7.7 × 1010h−1M�, which have ν = 1.51.

That means that the bias would only be 1.76, which would make σ8,gal = 0.48, just half of what is

observed.

This is considered to be strong evidence that the Lyman-break galaxies do not typically reside

in halos of 1011M�.

Problem 3:

a) 3
2kBT = GM200µmH/r200. Using M200 = 4π

3 200ρ0r
3
200, we get T = (4π

3 200ρ0)1/3 2GµmH
3kB

M
2/3
200 .

µ = 0.59 for a fully ionized primordial plasma, and ρ0 = 2.76× 10−30g cm−3 for Ω = 0.3, h = 0.7.

This gives T = 6.7× 107(M200/1015M�)2/3 K.

b) The derivation in 1(c) is helpful here – the mass at r200 is equal to M200:

M200 = 4π

∫ r200

0
dr r2ρ = 4πρsr

3
s

∫ r200/rs

0
dx

x

(x+ 1)2
= 4πρsr

3
s

[
log

(
1 +

r200

rs

)
− r200

r200 + rs

]
(2)

Using c ≡ r200/rs and M200/r
3
200 = (4π/3)200ρ0, we get

ρs =
200c3ρ0

3

[
log (1 + c)− c

c+ 1

]−1

(3)

At r = rs, ρ(rs) = ρs/4. Electron density is simply ne,s = ρ(rs) × (Ωb/Ωm)/mp. Which is

1.7 × 10−3 cm−3 for c=10. Note that you need to correct for the baryon fraction here.

Most of the cluster is dark matter! Note that this is independent of halo mass!

c) The cooling radius is defined as the radius rc where the cooling time tc equals the Hubble

time tH (which we will take as 13.7 Gyr). Hence for an NFW gas profile,

tc(r) = kT/ne(r)Λ =
kT

Λ

r(r + rs)
2

ne,sr3
s

. (4)

We can equate the LHS to tH , and rewrite the RHS with modest algebra as

tH =
kT

Λ

c3

ne,s

rc
r200

(
rc
r200

+
1

c

)2

(5)
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d) We now solve this for a 1015M�, c = 10 halo. The virial temperature is T = 6.5 × 107 K

from part (a). For that temperature, Λ = 1.37 × 10−23 erg cm3 s−1. Using ne,s from above, we

have
rc
r200

(
rc
r200

+ 0.1

)2

= 0.4. (6)

We then solve this by trial-and-error to obtain rc ≈ 0.1r200.

e) For the 1014M� halo, T = 1.4 × 107 K, and Λ = 6.4 × 10−24 erg cm3 s−1. Again by trial

and error we obtain rc ≈ 0.15r200. This halo will have cooled out more of its material. Hence one

expects more baryons in a “cool” form (i.e. stars or cold gas) as one goes to smaller masses; this

is qualitatively consistent with observations.

Problem 4 (10 pts): a) The number of recombinations per unit volume is αneni, while the

number of ionizations per unit volume is ΓnH . In ionization equilibrium, these two must be equal.

If the medium is nearly ionized, then ne = ni ≈ nb, the total density of baryons. This means that

nH = αn2
b/Γ. The neutral fraction xH = nH/nb = αnb/Γ and hence depends linearly on the gas

density and inversely on incident UV flux.

b) The hydrogen density today is 2.0×10−7 cm3 given Ωbh
2 = 0.024 and a hydrogen fraction of

75%. At z = 3, it is 64 times higher. For JH = 0.3, we have Γ = 1.3× 10−12 s−1. For T = 15, 000

K, we have α = 3.2 × 10−13 cm3 s−1. This gives a neutral fraction of 3.15 × 10−6, which is very

small!

c) The HI optical depth is τHI ∝
∫
σnHIdl ∝

∫ n2
H
Γ

dl
dzdz, where l is the physical path length.

To relate to comoving path length S, dl
dz = dS/dz

1+z = c
H(1+z) ∝ (1 + z)−5/2 using H(z) ∝ (1 + z)3/2

in the matter-dominated case. Meanwhile, nH ∝ (1 + z)3, so if Γ =constant, then τHI ∝
∫

(1 +

z)3.5d(1 + z) ∝ (1 + z)4.5. Transmission is T = 1 − e−τ ≈ τ for τ � 1 (which is true at the mean

density for z � 6), therefore it also scales as (1 + z)9/2. FYI, the observed scaling is close to this,

T̄ ∝ (1 + z)4.3.

d) The mean free path is 1/σnH = 1/σxHnb, where σ = 6.3× 10−18(ν1/ν)2.8 cm2. Scaling from

part (b), the neutral fraction will be 24 times higher, which is 7.6 × 10−5. The mean hydrogen

density at z = 7 is 10−4 cm−3. Hence the mean free path is then 2.1× 1025(ν/ν1)2.8 cm, which is

6.4(ν/ν1)2.8 Mpc. The Hubble distance is c/H(z) ≈ c/H0

√
Ωm(1 + z)3 = 354 Mpc for Ωmh

2 = 0.14

and z = 7. These are equal for ν = 4.2ν1 = 57 eV.

In practice, 54.4 eV is the ionization energy for He+, and we believe that most of the helium

at z = 7 is only singly ionized, so there will be an enormous additional component of optical depth

at energies above 54.4 eV (this is called the HeII Gunn-Peterson effect). There would also be a

contribution from neutral He absorption at 26 eV. In other words, the numbers in this problem

would leave the universe at least marginally optically thick across the far-UV.


